
WP4: High Performance 
Language Models

HPLT kickoff 2.9.2022 Prague



Overview
WP4 optimizes, builds and evaluates language models 
(LMs). (cf. WP5: machine translation models)


• Pretrain BERT-, GPT-, and T5-like models


• Cover ~80 languages + multilingual LMs


• Variations: model sizes, efficient models, etc.


• Evaluation: perplexity + downstream tasks


UTURKU, UOSLO CUNI; spans 36 months; takes 78PM



Overview
WP4 optimizes, builds and evaluates language models 
(LMs). (cf. WP5: machine translation models)


• Pretrain BERT-, GPT-, and T5-like models


• Cover ~80 languages + multilingual LMs


• Variations: model sizes, efficient models, etc.


• Evaluation: perplexity + downstream tasks


UTURKU, UOSLO CUNI; spans 36 months; takes 78PM

Hundreds of 
models at 
minimum, 
potentially 

over 1000 (!)



Overview



Overview
Four tasks:


• T4.1: Building/Training Language Models (UTURKU, UOSLO) 


• T4.2: Efficient Data Usage & HPC utilization (UOSLO) 


• T4.3: Evaluating Large Language Models (UTURKU, UOSLO) 


• T4.4: Ethical Considerations (UOSLO, CUNI) 


Two deliverables:


• D4.1:Trained language models (UTURKU, M30)


• D4.2: Report on language model evaluation (UTURKU, M35)  



T4.1: Building/Training 
Language Models

Starts M1, ends M36 (UTURKU, UOSLO)


Adapt and develop tools for training LMs, including


• Bidirectional (BERT-like)


• Causal (GPT-like)


• Encoder-decoder (T5-like)


Create automated, unified and documented training 
process; release tools and models openly


Target 76+ languages and multilingual models



T4.2: Efficient Data Usage & 
HPC utilization

Starts M6, ends M30 (UOSLO)


Explore efficient use of data and compute


• Alternative pre-training objectives (e.g. w/annotation) 

• Efficient model variations (e.g. ELECTRA) 

• Practical data requirements


Systematically assess pretraining approaches, identify best 
practices



T4.3: Evaluating Large 
Language Models

Starts M1, ends M36 (UTURKU, UOSLO)


Systematically evaluate all created models, comparing with 
previously released models (incl. massively multilingual)


• Intrinsic evaluation: perplexity on held-out data 

• Extrinsic evaluation on multilingual datasets for various 
downstream tasks (e.g. Universal Dependencies) 

Need to assemble task-specific datasets and created 
automatic evaluation framework



T4.4: Ethical Considerations 
in Training and Deployment

Starts M1, ends M36 (UOSLO, CUNI)


Implements ethics plan for LM training


• Focus on exploring debiasing in an end-to-end fashion 
that was previously too costly to try. 




Deliverables
D4.1: Trained language models (UTURKU, M30)


• Bidirectional, causal, and encoder-decoder LMs for 76+ 
languages and multilingual LMs, with variations on each 
(T4.1 + T4.2)


D4.2: Report on language model evaluation (UTURKU, 
M35)


• Results of LM evaluation (T4.3)




Implementation
Key components:


• Monolingual datasets (WP2 → WP3 → WP4)


• Compute (LUMI-G)


• Model and pre-training implementations



Compute

HPLT has 3M GPU-hours on LUMI, the 3rd fastest 
supercomputer in the world (also 3rd-greenest, and fastest 
in Europe)


LUMI-G has 2560 nodes, each with 4 AMD MI250X devices 
(10240 GPUs / 20480 GCDs), 375 Pflop/s


The 3M GPU-hours will be primarily used in WP4 and WP5



Compute
As much as 3M GPU-hours may sound like, it is fairly 
limiting given that WP4 will at minimum train 100s of LMs:


• English GPT-3 model required 3640 PFLOPS-days 

• Assuming 40 TFLOPS performance on LUMI, training a 
single full GPT-3 model would require ~2M GPU-hours 

→ Even if the full 3M GPU-hour compute budget were used 
only on training GPT models, each model could only use a 
few % points of the compute to create GPT-3



Compute
LUMI-G pilot projects originally scheduled for Dec. 2021, 
but LUMI-G currently still unavailable (“pre-pilot phase”)


Pilots currently projected to start late September and 
general use late October 2022


→ HPLT LUMI-G allocation likely to become available for 
use in late October at the earliest


Before that, relevant work can start in pre-pilot 
experiments and pilot projects



Technology
UTURKU currently focusing on


• ROCm: AMD’s CUDA-workalike (mature)


• Pytorch backend for model implementations (in beta for ROCm)


• HF Transformers: high-level LM implementations (mature, but 
not highly optimized)


• DeepSpeed: Microsoft library for large LMs (beta-level ROCm 
support) 


• Megatron: NVIDIA’s large LM implementation (experimental 
ROCm support)


UOSLO: also TF, JAX



Technology
Current status of technology stack on LUMI-G by model 
class (UTURKU):


• Causal (GPT-like): fully functional, scaled to 800 GPUs in 
preliminary experiments, deconverge issues for very 
large LMs


• Bidirectional (BERT-like): fully functional, but only tested 
on comparatively small models (BERT base/large)


• Encoder-Decoder (T5-like): so far unable to run on 
ROCm platform


(Working through tech issues with LUST and AMD staff)



Group
TurkuNLP is 20+ years old and has more than 20 members


Substantial focus on large LM training and use in last ~4 
years, with perhaps half the group working with large LMs


Two members starting on HPLT now; both have been 
working on large LM training on supercomputers



Discussion
• First monolingual data delivery: format, schedule, etc.


• What languages to focus on first?


• Which multilingual model to train? Balance between 
limited and massively multilingual?


• What model sizes to train, and when? Focus on largest 
feasible first, or work up from smaller models?


• Which additional LMs to explore? Interest in memory/
retrieval-augmented models?


• Which downstream tasks to target in evaluation?



Discussion
• How to split compute budget? WP4/WP5/others, project 

participants, GPT/BERT/T5/others?


• Apply for additional compute? (HPLT members already have 
several million GPU-h in separate projects!) 


• How generic should pretraining implementations be? e.g. LUMI 
only / ROCm+Slurm platforms / supercomputers / any computer?


• How generic should evaluation implementations be? 

• (Related: How to prioritize training efficiency vs. generality of 
implementation?)


• How to coordinate technical work on WP4/WP5 to minimize 
duplication of effort?


